

Subnetting

- A subnet is a logical subdivision of an IP network
- The process of dividing a network into two or more networks is called subnetting.
- The main purpose of subnetting is to help relieve network congestion ,and improve network performance .

- Security is another benefit of subnetting.
- Know some knowledge a bout subnetmask, network ID, host ID, broadcast ID

	Subnet	1	2	4	8	16	32	64	128	256	
ľ	Host	256	128	64	32	16	8	4	2	1	
>	Subnet Mask	/24	/25	/26	/27	/28	/29	/30	/31	/32	Í

I	Original 192.16	netwo 38.4.0/2	Subnet 1 2 Host 256 128 Subnet /24 /25	4 8 16 32 6 4 32 16 8 4 26 /27 /28 /29 /3	54 128 256 4 2 1 30 /31 /32
	Network ID	Subnet Mask	Host ID Range	# of Usable Host	Broadcast ID
	192.168.4. <mark>0</mark>	/26	192.168.4.1-192.168.4.62	62	192.168.4.63
	192.168.4. <mark>64</mark>	/26	192.168.4.65-192.168.4.126	62	192.168.4.127
	192.168.4. <mark>128</mark>	/26	192.168.4. <mark>129</mark> -192.168.4. <mark>190</mark>	62	192.168.4.191
	192.168.4. <mark>192</mark>	/26	192.168.4. <mark>193</mark> -192.168.4. <mark>25</mark> 4	62	192.168.4.255

/

					31	IDI	iett	ing	as	udi	net			
					1 1	\wedge			1				7	
			Subr	net 1	2	4	8	16	32	64	128	256		
			Ho	st 256	128	64	32	16	8	4	2	- 1		
			Subr	net /24	/25	(26	/27	/28	/29	/30	/31	/32	1	
				Give	en net	wor	'k ID	125.2	23.20	0.64	1/26	•		•
#		Netwo ID	r k	Subnet Mask		Но	st ID	Rang	е	#	t of Us Hos	able st	Broadcast ID	
1	1	25.23.20	0. <mark>64</mark>	/28	125.23	.200	. <mark>65</mark> -12	25.23.	200. <mark>78</mark>		14	w.	125.23.200.79	
2	1	25.23.20	0.80	/28	125.23	.200	. <mark>81</mark> -12	25.23.	200 <mark>.94</mark>		14)	125.23.200.95	
3	1	25.23.20	0.96	/28	125.23	.200	. <mark>97</mark> -12	25.23.	200.11	0	14		125.23.200.111	
4	1	25.23.20	0.112	/28	125.23	.200	.113-1	25.23	.200.1	26	14	8	125.23.200.127	

Notes

- If you see a subnet with CIDR from /24 to /30 you can use C Table .
- If you are given a subnet with CIDR value from /8 to /23 you can use B Table .

CIDR

Classles inter domain routing .

CIDR means subnetting.

The class license loses meaning ,that is why the letter C in CIDR means "Classles".

The main purpose of subnetting is to break the class license so that we can have more smaller-subnets .

The initial goal of CIDR was to slow the increase of <u>routing tables</u> on routers across the internet and decrease the rapid exhaustion of IPv4 addresses. As a result, the number of available internet addresses has greatly increased.

Task

Suppose I have a class B ID: 172.16.0.0/16, and I want to create 4 new subnets. Here are three questions I am going to answer:

 What is the new subnet mask?
 How many usable host IDs for each new subnet?
 List each network ID, the useable host ID range, and each broadcast ID.

 \bigcirc

0

• The new subnetmask is/18

 \odot

• Each subnet has 16382 usable host IDs

Network ID	Host Range (16,382)	Broadcast ID
172.16. <mark>0.0</mark>	172.16 <mark>.0.1</mark> - 172.16. <mark>63.254</mark>	172.16.63.255
172.16. <mark>64.0</mark>	172.16.64.1 - 172.16.127.254	172.16.127.255
172.16.128.0	172.16.128.1 - 172.16.191.254	172.16.191.255
172.16.192.0	172.16.192.1 - 172.16.255.254	172.16.255.255

VLSM subnetting

• The example that we explained before ,we used Fixed Length Subnet Mask subnetting or FLSM subnetting .

- In FLSM subnetting all subnets are of equal size with the same subnet mask .
- The FLSM subnetting is easier, this type of subnetting leads to inefficiencies and waste in terms of ID allocation and use.
- VLSM stands for variable length subnet mask .
- In VLSM subnetting we can get different subnet masks for different networks

Simulation Question

CompTIA Network+ Simulation Question

Corporate headquarters provided your office a portion of their class B subnet to use at a new office location. Allocate the minimum number of addresses (Using CIDR notation) needed to accommodate each department.

After accommodating each department, identify the unused portion of the subnet by responding to the question on the graphic. All drop downs must be filled. ----

ICONLINE SERVICES

Subnet

 \odot

۲

 \odot

1	2	4	8	16	32	64	128
		- accord	1			1000	

 \odot

Task

Host	256	128	64	32	16	8	4	2	1
Subnet Mask	/24	/25	/26	/27	/28	/29	/30	/31	/32

256

0

0

<u>9215 🛇 </u>

Range give	n: 172.30.232.0/24
• HR	57 devices
Sales	100 devices
• IT	12 devices
• Finance	25 devices

Range give	n: 172.30.232.0/24
Sales	100 devices
• HR	57 devices
Finance	25 devices
IT	12 devices

Subnet	1	2	4	8	16	32	64	128	256
Host	256	128	64	32	16	8	4	2	1
Subnet Mask	/24	/25	/26	/27	/28	/29	/30	/31	/32

 \odot

 Sales 	100 devices
• HR	57 devices
Finance	25 devices
OIT	12 devices

-0

0

<u>9215 🛇 </u>

 \odot

 \odot

 \odot

Which is the largest possible contiguous block of the remaining address?

Subnet	1	2	4	8	16	32	64	128	256
Host	256	128	64	32	16	8	4	2	1
Subnet Mask	/24	/25	/26	/27	/28	/29	/30	/31	/32

The # of IDs used: 128 + 64 + 32 + 16 = 240

The total # of IDs in /24 is 256

The remaining IDs unused: 256 - 240 = 16

The answer is /28

In summary

• VLSM subnetting is a more efficient way of subnetting is a more efficient way of subnetting compared with

FLSM subnetting.

• With VLSM subnetting we can get the minimum number of host IDs to meet networks with different sizes.

9215

• NEXT webinar VLSM subnetting –subnetting a subnet .

